Training and Prediction¶
Now that our data is properly encoded, we'll use a classification model to predict penguin species based on their filtered physical characteristics. We'll employ scikit-learn's Random Forest Classifier to calculate probability scores for each species prediction.
In this chapter, we will:
- Split our filtered dataset into training and testing sets
- Train a Random Forest Classifier using our selected feature set
- Calculate prediction probabilities for each penguin species
- Visualize these probabilities using Streamlit's interactive components
Train and Predict¶
As part of displaying the predictions we will use the following Streamlit components to make the output aesthetically appealing,
Edit and update the $TUTORIAL_HOME/streamlit_app.py
with the following code,
streamlit_app.py | |
---|---|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 |
|
Summary¶
After successfully creating an interactive penguin species prediction app using Streamlit's Progress bars for probability visualization, Columns for layout, and Containers for organized content, we'll now explore how to deploy this same application in Snowflake using Streamlit in Snowflake (SiS). This will allow us to leverage Snowflake's data platform while maintaining our app's interactive features.
In the next chapter, we will:
- Adapt our existing Streamlit app for Snowflake environment
- Configure necessary Snowflake connections
- Deploy and test our application using SiS
- Understand key differences between local and Snowflake deployment